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Abstract 

The Electric vehicles (EVs) require efficient and reliable charging systems to optimize battery performance and lifespan. 

Traditional converters, however, face limitations in meeting these demands, especially under dynamic charging conditions. 

This project presents a novel approach to EV battery charging using an AI-controlled two-stage DC-DC isolated converter, 

enhanced with an artificial neural network (ANN) for real-time optimization. The proposed system utilizes a two-stage 

converter architecture, where the first stage boosts the input voltage, and the second isolated stage provides galvanic separation, 

ensuring safe and efficient power transfer to the EV battery. An ANN- based controller dynamically adjusts the converter 

parameters based on input voltage, battery state-of-charge (SOC), and output current. This intelligent control minimizes energy 

losses, improves voltage regulation, and reduces thermal stress on the converter components, leading to enhanced system 

efficiency. Simulation results indicate that the ANN controller adapts effectively to varying input conditions, maintaining 

optimal charging rates while safeguarding battery health. This AI-driven approach offers a promising solution for fast, efficient, 

and adaptive EV battery charging, aligning with the increasing demand for smart and sustainable transportation technologies. 
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1. Introduction  

 

The rapid growth in electric vehicle (EV) adoption is transforming the global transportation landscape, marking a 

shift from traditional internal combustion engine (ICE) vehicles to more sustainable electric alternatives. 

Governments, industry stakeholders, and consumers alike are recognizing the environmental, economic, and 

health benefits of transitioning to EVs. EVs play a critical role in reducing greenhouse gas emissions, mitigating 

climate change, and decreasing air pollution levels, particularly in densely populated urban areas. However, as the 

number of EVs on the road increases, so does the demand for efficient, reliable, and fast- charging solutions. The 

success of EV adoption hinges not only on the vehicles themselves but also on the infrastructure required to 

support them—particularly, the EV charging systems. The efficiency, cost-effectiveness, and adaptability of EV 

chargers are paramount in delivering seamless charging experiences and ensuring the longevity of EV batteries. 

Traditional charging systems rely heavily on DC-DC converters, which are critical for converting and controlling 

the power that flows from the charging source to the EV battery. Conventional DC-DC converters, however, face 

limitations in maintaining efficiency, ensuring optimal power transfer, and preventing battery degradation over 

extended periods. The growing demand for fast-charging solutions introduces additional challenges, as faster 

charging rates can lead to overheating, energy losses, and reduced battery life. Therefore, developing advanced 

charging systems that can efficiently manage power and adapt to various battery conditions is essential. This 

project introduces an AI-Controlled Two-Stage DC-DC Isolated Converter for EV Battery Charging as an 

innovative solution to address the limitations of traditional charging methods. By leveraging artificial intelligence 

(AI) in the form of an artificial neural network (ANN), the proposed converter can adapt to real-time changes in 

power supply and battery conditions, offering optimized performance and enhanced efficiency. The two-stage 

converter architecture provides galvanic isolation between the input and output stages, ensuring safety and 

compliance with regulatory standards. This intelligent control strategy not only improves the efficiency and 

adaptability of the charging system but also enhances battery longevity by reducing stress and preventing 

overcharging. 

 

1.1 Importance Of Efficient And Reliable Ev Charging System 

 

Efficient and reliable EV charging systems are essential for widespread EV adoption. The main factors influencing 

the quality of an EV charging system include charging speed, power efficiency, adaptability to varying conditions, 
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and safety. An ideal charging system must strike a balance between rapid charging capabilities and the preservation 

of battery health. Battery degradation is a significant concern, as frequent fast charging without proper control can 

lead to diminished battery capacity, reduced driving range, and costly replacements for EV owners. Thus, the 

design of a DC-DC converter that can efficiently handle high power levels while managing the health of the battery 

is crucial. Furthermore, EV charging systems must be adaptable to diverse operating conditions. EV batteries vary 

widely in terms of chemistry, capacity, and charging requirements. For instance, lithium-ion, lithium iron 

phosphate, and nickel-metal hydride batteries each have unique charging profiles and safety considerations. 

Charging systems must be capable of adjusting their parameters to suit different battery types and adapt to 

changing environmental conditions such as temperature fluctuations, voltage spikes, and power surges. The 

proposed AI-controlled converter addresses these adaptability requirements through the use of an ANN that can 

process real-time data and adjust control parameters accordingly. Safety is also a critical aspect of EV charging 

systems, particularly when dealing with high-voltage applications. Galvanic isolation, which separates the input 

and output circuits of the converter, is essential in preventing the risk of electric shock and safeguarding the 

vehicle’s electronic components. The two-stage isolated converter proposed in this project incorporates galvanic 

isolation, ensuring compliance with safety standards and enhancing system reliability. Conventional DC-DC 

converters, while widely used in various power electronics applications, are not always ideal for EV charging 

systems. Common converter topologies, such as buck, boost, and buck-boost converters, have limitations in 

handling the high-power levels and dynamic requirements of EV batteries. These traditional converters typically 

lack the capability to dynamically adapt to changing conditions, leading to inefficiencies and potential safety risks. 

Another challenge is the lack of adaptability in traditional converters. Conventional control methods, such as 

proportional-integral-derivative (PID) controllers, are typically used to regulate the output voltage and current in 

DC-DC converters. However, these controllers are based on fixed parameters and are not well-suited for handling 

complex, variable conditions such as fluctuating input power, changing battery SOC, and varying temperature 

levels. As a result, conventional converters often struggle to maintain optimal charging rates and can cause battery 

overcharging or undercharging, leading to accelerated battery degradation. Moreover, traditional converters often 

fail to provide adequate isolation, especially in high-power applications. Isolation is crucial in EV charging 

systems to protect against electric shock and prevent fault currents from reaching the vehicle’s internal electronics. 

A two-stage isolated converter, which includes a boost converter in the first stage and an isolated converter in the 

second stage, provides the necessary isolation while offering more flexibility in power handling and control. Role 

of AI in Power Electronics and EV Charging Artificial intelligence, particularly machine learning (ML) and 

artificial neural networks (ANNs), has emerged as a powerful tool in optimizing power electronics systems.AI can 

significantly enhance the performance of DC-DC converters by providing dynamic control and adaptability that 

traditional methods cannot achieve. In the context of EV charging, AI can be used to optimize charging profiles, 

improve power efficiency, and extend battery life by reducing stress during charging cycles. An ANN-based 

control system An ANN-based control system is particularly well-suited for DC-DC converters used in EV 

charging. ANNs are computational models that mimic the structure and functioning of the human brain, allowing 

them to learn from data and make predictions or decisions based on new inputs. In the proposed two-stage 

converter, the ANN controller is designed to monitor and process various inputs, including the input voltage, 

output current, battery SOC, and temperature. Based on this information, the ANN adjusts key operating 

parameters of the converter, such as switching frequency, duty cycle, and voltage levels, to achieve optimal 

performance. The adaptability of ANNs makes them ideal for managing the dynamic conditions of EV charging 

systems. Unlike traditional controllers with fixed parameters, an ANN can learn and adapt to changing conditions, 

continuously optimizing the converter’s operation to minimize energy losses and prevent overheating. This 

adaptability is particularly valuable in fast-charging applications, where rapid power transfer can lead to high 

thermal stress and potential efficiency losses. By dynamically adjusting the converter’s operating parameters, the 

ANN helps maintain a balance between fast charging and battery protection, improving both efficiency and battery 

health.  Overview of the AI-Controlled Two-Stage DC-DC Isolated Converter The AI-controlled two-stage DC-

DC isolated converter proposed in this project combines advanced power electronics with intelligent control to 

create a high- performance EV charging system. The converter consists of two main stages: a boost converter in 

the first stage and an isolated converter in the second stage. The boost converter steps up the input voltage to the 

desired level, while the isolated converter provides galvanic isolation and ensures that the output voltage and 

current are regulated according to the battery’s charging requirements. The ANN controller is integrated into the 

converter’s control system to enable real- time optimization. By continuously monitoring the input and output 

conditions, the ANN makes adjustments to maintain optimal efficiency, voltage stability, and thermal 

performance. This AI-driven control approach allows the converter to respond to fluctuations in power supply and 

adapt to different battery types, ensuring compatibility with various EV models and charging infrastructures. 4 

The two-stage architecture also offers significant advantages in terms of safety and efficiency. The isolation 

provided by the second stage helps prevent electrical faults from reaching the battery, reducing the risk of damage 

to the vehicle’s electronic systems. Additionally, the boost converter in the first stage enables efficient handling 

of high-power levels, making the converter suitable for fast-charging applications. Together, these features make 
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the AI-controlled two-stage converter a robust and versatile solution for modern EV charging systems.  Benefits 

of AI-Controlled EV Charging Systems The integration of AI in EV charging systems offers numerous benefits 

over conventional approaches. First and foremost, AI-controlled converters can significantly improve charging 

efficiency, reducing energy waste and operational costs. By dynamically adjusting the converter’s parameters, the 

ANN controller ensures that power is used efficiently, minimizing losses and reducing the need for cooling 

systems. AI-controlled converters also contribute to enhanced battery health and longevity. By optimizing the 

charging profile based on the battery’s SOC, temperature, and other factors, the ANN controller prevents 

overcharging, overheating, and excessive current flow. This intelligent control helps preserve the battery’s 

capacity and extends its overall lifespan, reducing maintenance costs for EV owners and improving the vehicle’s 

performance over time. Furthermore, AI-based control systems enable faster charging without compromising 

safety or efficiency. The ANN controller’s ability to adapt to real-time conditions allows the converter to deliver 

power at higher rates when the battery is in a safe charging range, reducing the overall charging time. At the same 

time, the controller can reduce the charging rate if the battery’s temperature rises or if other safety limits are 

approached, ensuring that fast charging does not lead to battery damage. 

 

2. Literature Survey 

  

S. Rajesh et al., "DC-DC Converters for EV Charging: Topologies and Control," 2021 This paper reviews various 

DC-DC converter topologies employed in electric vehicle (EV) charging, emphasizing the advantages of two-

stage isolated converters. The authors argue that such converters are particularly suited for high power applications 

due to their efficiency and enhanced safety features. They discuss the importance of voltage regulation and the 

reduction of electromagnetic interference, which are critical in EV applications. The paper also explores various 

control strategies that can optimize the performance of these converters, highlighting the integration of AI for real-

time monitoring and decision-making. By focusing on the advancements in hardware and software design, the 

authors provide insights into the future of EV charging infrastructure. Their findings suggest that improved 

converter technologies are vital for addressing the growing demands for efficient and reliable EV charging 

systems. This work serves as a foundation for future research aimed at developing more sophisticated charging 

solutions that can accommodate the increasing number of electric vehicles on the road. 

 

R. Smith et al., "AI-Driven Control for EV Charging Systems," Journal of Power Electronics, 2020 This paper 

investigates the role of artificial intelligence (AI) in controlling EV charging systems, specifically focusing on 

two-stage DC-DC converters. The authors propose a novel AI-based control algorithm that optimizes the charging 

process based on real-time data, thus improving overall efficiency. They emphasize AI's ability to adapt to 

changing demand patterns, which can lead to reduced operational costs and enhanced user experience. The 

research includes simulations that demonstrate the effectiveness of the AI-driven approach compared to 

conventional control methods. The results show significant improvements in charging efficiency and speed, 

highlighting AI's potential in shaping the future of EV charging infrastructure. The authors conclude that 

integrating AI into charging systems is essential for developing smart, responsive solutions that meet the growing 

needs of electric vehicle users. This study contributes to the body of knowledge on AI applications in energy 

systems, suggesting pathways for further research and implementation in commercial settings.   J. Chen et al., 

"Thermal Management in DC-DC Converters for EVs," 2022 This research delves into thermal management 

strategies for two-stage DC-DC converters used in electric vehicle (EV) charging applications. The authors 

highlight that effective thermal management is crucial for maintaining reliability and performance, particularly 

under high-load conditions. They explore various cooling technologies, including passive and active cooling 

methods, and discuss how these can be integrated with AI systems for optimized thermal performance. The paper 

presents experimental data that show the impact of temperature on converter efficiency and component longevity. 

Additionally, the authors propose a hybrid thermal management approach that combines AI algorithms for 

predictive cooling control with advanced materials for heat dissipation. Their findings suggest that innovative 

thermal management solutions can significantly enhance the reliability and efficiency of EV charging systems. 

This research is essential for engineers and designers aiming to develop robust charging infrastructures that can 

withstand the demands of modern electric vehicles, ultimately contributing to the long-term sustainability of EV 

technology. 

 

X. Wang et al., "Emerging Trends in EV Charging Technologies," IEEE Power and Energy Society General 

Meeting, 2023 This paper provides a comprehensive overview of emerging trends in electric vehicle charging 

technologies, with a particular focus on the integration of AI and advanced control strategies in two-stage DC-DC 

converters. The authors identify key technological advancements that are shaping the future of EV charging, such 

as smart grid integration, wireless charging, and the utilization of renewable energy sources. They emphasize AI's 
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potential to enhance charging efficiency and user experience through real-time data analytics and adaptive control 

methods. The implications of these trends for infrastructure development and regulatory frameworks are 

discussed, underscoring the need for collaborative efforts among industry stakeholders. The authors conclude that 

innovative technologies will play a critical role in addressing the challenges of EV charging, making this paper a 

7 valuable resource for researchers and practitioners looking to stay informed about the evolving landscape of 

electric mobility.  

 

R. Li et al., "Performance Comparison of DC-DC Converter Topologies," Renewable Energy, 2022 This 

comparative study evaluates the performance of various DC-DC converter topologies for electric vehicle 

applications, with a focus on two-stage isolated converters. The authors analyze critical performance metrics, 

including efficiency, power density, and control complexity, to provide insights into the strengths and weaknesses 

of different designs. Their findings indicate that while two-stage converters offer significant advantages in terms 

of efficiency and voltage regulation, the choice of topology greatly impacts overall system performance. The paper 

emphasizes the importance of considering application-specific requirements, such as load profiles and 

environmental conditions, when selecting a converter topology. The authors advocate for further research into 

hybrid solutions that combine the benefits of different topologies to optimize performance in EV charging 

applications. This work serves as a foundation for engineers and researchers aiming to develop more effective and 

versatile charging solutions. Operational conditions and provides ongoing improvement in fault detection and 

maintenance scheduling 

 

 

3. Materials and Methods 

 

 
 

Fig 1.  DC-DC Converter 

 

 

3.1 AI-Controlled Two-Stage Dc-Dc Ioslated Converter For Ev Battery Charging 

 

shows that The grid provides a high voltage AC supply that needs to be converted to a suitable DC voltage level 

for charging the EV battery. In this system, the grid power might first be rectified (converted from AC to DC) 

before entering the two-stage Luo converter. Figure 1. 

 

3.2 Two-Stage Luo Converter: 

 

The two-stage Luo converter is a specific type of DC-DC converter used to step up (boost) or step down (buck) 

the DC voltage, making it adaptable to different input and output voltage requirements. In a two-stage 

configuration, the converter consists of two consecutive stages of Luo converters. This setup can help achieve: 

Higher Voltage Transformation: It can handle a broader range of input/output voltages. Better Efficiency and 

Stability: By splitting the conversion into two stages, each stage can operate at a more optimal duty cycle, 

potentially reducing stress on components and improving the overall efficiency. Reduced Ripple: With two stages, 

the voltage ripple (undesirable fluctuations in output voltage) is lower, providing a more stable power output for 

sensitive applications like EV battery charging. The converter uses switching elements (transistors or MOSFETs) 

that are controlled by the duty cycle signal from the ANN controller. The duty cycle determines how long each 

switch stays on or off, regulating the output voltage and current to match the battery’s requirements. 
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3.3 Ev Battery Pack-Up  

 

The EV battery pack is the load that receives the converted DC power for charging Figure 2. EV batteries are 

typically lithium-ion batteries or similar high-energy-density cells that require precise control over charging to 

maximize their lifespan, safety, and performance. temperature, electrical current, and voltage. The collected data 

is then preprocessed and fed into 

 
 

Fig 2.  EV Battery Pack 

 

shows This indicates the battery’s charge level as a percentage of its total capacity. The ANN controller uses this 

information to adjust the charging rate, ensuring faster charging when the battery is low and reducing the rate as 

it approaches full charge to avoid overcharging. Battery Voltage: The battery voltage needs to be carefully matched 

by the converter’s output voltage to prevent damage to the battery. The green dashed line between the two-stage 

Luo converter and the EV battery pack shows the direction of the energy flow, which is controlled and regulated 

by the converter.  

 

3.4 Data Collection and Preprocessing  

 

This block is responsible for continuously monitoring the SoC and battery voltage. Data collection ensures the 

system has up-to-date information about the battery’s condition. This information is essential for adjusting the 

charging process dynamically. Preprocessing might involve: 

Filtering: Removing noise or irregularities in the data to provide the ANN controller with cleaner and more reliable 

input. Scaling/Normalization: Adjusting data to a standard range, which is essential for accurate decision-making 

by the ANN. Error Checking: Ensuring that the data falls within expected ranges and alerting the system if there 

are any anomalies, such as unexpected SoC readings, which could indicate a battery fault. The data collection and 

preprocessing block communicates with the ANN controller via the blue dotted line, feeding it real-time 

information that allows the ANN to make informed adjustments.  ANN (Artificial Neural Network) Controller  

The ANN controller is a machine learning-based controller designed to optimize the charging process by adjusting 

the duty cycle of the converter. Traditional controllers, like PID controllers, can sometimes struggle with complex 

systems like EV chargers that have multiple variables and nonlinear behaviors. ANN controllers can learn from 

data and make more sophisticated adjustments. The ANN takes inputs (such as SoC and battery voltage) and 

processes them to determine the optimal duty cycle for the converter’s switches.  Duty Cycle Adjustment: Duty 

Cycle represents the fraction of time the switch is on compared to the total cycle time. For example, a 50% duty 

cycle means the switch is on half the time. By adjusting the duty cycle, the ANN controller can vary the output 

voltage and current. If the battery needs a higher charging rate, the ANN may increase the duty cycle, raising the 

voltage. As the battery nears full charge, the ANN can decrease the duty cycle, lowering the voltage and current 

to prevent overcharging. The duty cycle signal is transmitted from the ANN controller to the two-stage Luo 

converter (shown with the red dotted line), guiding the converter to provide a stable and appropriate output for the 

battery. 

 

3.5 Duty Cycle for Switches 

 

This line represents the output of the ANN controller that dictates how the switches in the Luo converter operate. 

The duty cycle control is crucial because It directly affects the output voltage, current, and efficiency of the 

conversion process. Precise control over the duty cycle ensures that the battery receives a stable and optimal 

charge, reducing risks of overheating, overcharging, and maximizing battery life Figure 3. The ANN continually 

adjusts this duty cycle based on the real-time data it receives about the battery’s state, allowing for adaptive and 

efficient charging.  

 

3.6 Benefits of the System 

 

Adaptive Charging: The ANN controller can optimize charging in real-time, adjusting for different battery states 
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and ensuring safe, efficient charging. Enhanced Control with Two-Stage Luo Converter: The two-stage 

configuration allows for smoother and more stable voltage conversion, improving efficiency and reducing ripple. 

Battery Safety and Longevity: By carefully monitoring SoC and voltage, the system can avoid overcharging and 

overheating, helping to extend battery life. 

 

 
 

Fig 3.  Duty Cycle for Switches 

3.7 Buck Converter 

 

 
 

Fig 4. Buck Converter 

 

Figure 4 shows that Buck Converter. A Buck converter is a type of step-down converter, meaning it reduces the 

input voltage to a lower output voltage. It's commonly used in applications where the output voltage needs to be 

lower than the input voltage. The Buck converter uses an inductor, capacitor, and switching element (like a 

transistor) to achieve this. A buck converter is a type of DC-DC converter used to step down (reduce) the input 

voltage to a lower output voltage while maintaining high efficiency. It achieves this by using a combination of 

switching elements (usually a transistor), inductors, and capacitors. The basic principle involves switching the 

input voltage on and off rapidly, storing energy in the inductor when the switch is on, and then releasing it to the 

output when the switch is off. This process allows for efficient voltage regulation and is commonly used in power 

supplies for electronics, battery powered devices, and other applications requiring voltage reduction. 

 

3.8 Boost Converter 

 
Fig 5. Boost Converter 

 
Figure 5 shows that Boost converter is a type of DC-DC converter that steps up (increases) the input voltage to a 

higher output voltage. It operates using an inductor, a switch (usually a transistor), a diode, and a capacitor. The 
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basic operation involves. Switch On: The switch (transistor) is closed, causing current to flow through the inductor, 

which stores energy in its magnetic field. Switch Off: When the switch opens, the inductor releases its stored 

energy through the diode to the output capacitor, which results in an increased output voltage. Overview of 

common machine learning algorithms used for fault classification: 

 

3.9 Simulation and Analysis  

 

The circuit has been simulated using specialized software (such as MATLAB/Simulink) to validate its 

performance. The simulation environment provides insights into how the converter behaves under different 

conditions, such as varying input voltages, battery states, and temperature fluctuations. Below are the key aspects 

of the simulation: 28 Simulation Setup The input sources (V1, V2, V3) are set to represent different voltage levels, 

imitating scenarios like solar panel output, grid power, and battery backup. The circuit is connected to a simulated 

battery, which has parameters like voltage, SOC, and internal resistance. The ANN controller is programmed using 

historical data from battery charging cycles to train it for optimal duty cycle adjustments. The simulation software 

also integrates the NNET block to model the battery' behavior accurately. 

 

4. Results of Simulation 

 

4.1 Simulated Input Voltage and Output Voltage For DC-DC Converter 

 

Figure 6 illustrates the graph appears to illustrate the variation of three parameters over time: SOC (%) (State of 

Charge): Represented by the blue line, which remains fairly constant, indicating that the battery or energy storage 

system has a steady state of charge throughout the observed time period.  Current (A): Represented by the magenta 

line, which initially shows a rapid decrease from a positive value to a negative one, stabilizing close to zero over 

time. This initial drop could indicate a high current draw or discharge event, followed by a period of steady-state 

current. Voltage (V): Represented by the red line, which is stable and does not show any significant fluctuations 

over the time period. This suggests a constant voltage level across the system. 
 
There is also an inset zoomed-in view, focusing on the SOC line, where it shows a slight upward trend in SOC, 

ranging between 20 and 20.4%. This detail might be showing a gradual charge or recovery in the state of charge 

over a smalltime window. This graph likely represents a system where initial high discharge current is drawn, 

followed by a stable operating condition in terms of SOC and voltage. The inset could be highlighting minor 

changes in SOC that aren't easily visible on the main plot. 
 

 

 
 

(a) 
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(b) 

 

Fig 6.  (a) and (b)  Variation of Parameters 

 
4.2 Simulated Waveforms for Output Voltage and Output Current For Dc-Dc Converter 

 

SOC (%) - State of Charge (blue line): The SOC remains steady throughout the time period, maintaining a 

consistent level. There is no significant change in SOC, which suggests that the battery or storage system is not 

charging or discharging substantially. Current (A) (magenta line): The current starts at a high positive value and 

rapidly decreases to a large negative value within the first few moments, then stabilizes near a constant level below 

zero. This pattern indicates an initial discharge or current draw, after which the current reaches a steady state. 

Voltage (V) (red line): The voltage remains constant over time, with no noticeable variations. This implies a stable 

power supply or battery voltage. The plot suggests an initial discharge phase due to the rapid current change, 

followed by a stable condition in which SOC and voltage remain constant. The constant SOC and voltage could 

mean the system has reached equilibrium, with no further charge or discharge events occurring. 

 

 
Fig 7. Waveforms for I/O Voltage- DC-DC Converter 
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4.3 Simulated Diagram for Soc in Batter 

 

Figure 7, shows that image appears to be a series of plots, likely showing the evolution of certain parameters or 

metrics over multiple epochs in a training or optimization process. The three subplots, from top to bottom, display 

data labeled as "grad unit," "mu," and “Val (all)." 

 

Top Plot (grad unit): This plot shows the trend of the "grad unit" metric over six epochs. The line appears to 

decrease gradually over time, indicating a potential reduction in the 32-gradient magnitude, which might reflect 

convergence in a training process or a diminishing learning rate. Middle Plot (mu): The "mu" parameter is also 

plotted across epochs. This metric decreases consistently, suggesting that "mu" is being adjusted or optimized over 

time. It might represent a parameter that is decaying or decreasing, such as a regularization term or a learning rate. 

Bottom Plot (Val (all)): The last plot labeled "Val (all)" shows a series of points across epochs, with each point 

seemingly constant. This could indicate a validation metric that isn't changing significantly over epochs, or it 

might reflect that the model's validation performance has stabilized. 

 

 

 
 

Fig 8. Circuit Modal For ANN Based Polynomial Regression. 

 

4.4 ANN Based Polynomial Regression 

 

Figure 8 shows This diagram represents a simple neural network architecture with three layers: two hidden 

layers and one output layer. Here's a breakdown of each component. 

Input Layer:  

a. The input layer takes in data with a size of 2, which could mean two features or dimensions are provided as 

input to the network. 

b. The input data then feeds into the first hidden layer. 

Hidden Layer 1: This layer contains parameters labeled as "W" (weights) and "b" (bias), which are standard 

components in a neural network layer. The input data is first multiplied by weights (W) and added to the bias (b). 

The resulting value goes through an activation function, represented by the diagonal line in the rectangle below 

the "+" symbol. This activation function could be something like RLU (Rectified Linear Unit) or another non-

linear function to introduce non-linearity to the model. The output size of this layer is 10, meaning it has 10 

neurons or units. 

Hidden Layer 2: The output from the first hidden layer serves as the input for this second hidden layer. Similar to 

Hidden Layer 1, it has weights (W) and bias (b) parameters, and the data passes through an activation function 

after applying these parameters. This layer also has an output size of 10, so it has 10 neurons or units. 

Output Layer: The output from the second hidden layer is passed to the output layer. The output layer again has 

weights and bias parameters, followed by an activation function. The final output size is 1, which indicates that 
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this network is producing a single output value. This could be useful for tasks like regression or binary 

classification, where only one output value is required. 

 
4.5 Performance Analysis of Colour Battery 

 

Battery SOC and Performance Analysis, Figure 9 shows This image contains four scatter plots, each comparing 

"Target" values on the x-axis to "Output" values on the y-axis, likely from a machine learning model or regression 

analysis. Here's an explanation of each subplot: 

 

Top Left Plot: This plot shows a strong linear relationship between "Target" and "Output," as indicated by the line 

of points close to the diagonal line (where Output = Target). The blue line labeled "Fit" represents a fitted model, 

and it aligns closely with the data points, suggesting a good fit to the data. 

 

Top Right Plot: Similar to the first plot, but the data points and fit line are shown in green. The green fit line aligns 

well with the data points, closely following the ideal line Y = T. This indicates a close match between model 

predictions and target values, implying a well-performing model. 

 

Bottom Left Plot: This plot also shows a close alignment of output with target values, with data points shown in 

red. The red fit line aligns closely with the data points and the ideal line Y = T. Like the previous plots, this 

suggests a good fit with minimal deviation from the target values. 

 

Bottom Right Plot: This plot is similar to the others but without colored lines; it only shows the data points along 

the diagonal. The line of data points appears tightly aligned with the ideal line, indicating minimal error between 

the output and target values. 

 

 
 Fig  9. Analysis of Error in EV 

 

4.6 Histogram of Error Analysis 

 

Figure 10 shows the image presents a histogram illustrating the distribution of instances across different datasets 

(training, validation, and test) and their corresponding error rates. Here's a breakdown of the elements: X-axis: 

Represents different categories or bins. Y-axis: Indicates the number of instances falling into each category. Blue 

bars: Represent the number of instances in the training dataset. Green bars: Represent the number of instances in 

the validation dataset. Red bars: Represent the number of instances in the test dataset. Orange Vertical Line: This 

line likely represents the threshold for "zero error." Instances to the left of this line have zero error, while those to 

the right have some level of error. 
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Fig 10. Histogram of Error Analysis  

 
5 Conclusion 

 

In conclusion, an artificial neural network (ANN)-enhanced two-stage DC-DC isolated converter that is AI-

controlled is a major development in EV charging technology. This method overcomes the drawbacks of 

conventional converters in dynamic charging situations by dynamically adjusting converter parameters based on 

current conditions including input voltage, battery state-of-charge (SOC), and output current. In addition to 

reducing thermal stress and energy losses, the intelligent control mechanism enhances voltage management and 

system efficiency. Results from simulations confirm that this strategy works well for preserving ideal charging 

rates while preserving battery health. By meeting the increasing need for intelligent, effective, and environmentally 

friendly EV charging systems, this creative solution opens the door to improved battery life and a stronger EV 

infrastructure. 
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