

**International Journal of Engineering
Research and Sustainable Technologies**
Volume 3, No.4, Dec 2025, P 34 – 43

ISSN: 2584-1394 (Online version)

**DESIGN, ANALYSIS, SIMULATION, FABRICATION AND TESTING OF
ANTIPODAL VIVALDI ANTENNA**

¹Swetha A, ²Hemapriya Y, ³S Yuvarani, ⁴S Deborah

^{1,2,3,4} Department of ECE

^{1,2,3,4} Dr.MGR Educational and Research Institute, Tamil Nadu, India

* Corresponding author email address: sdeborah.ece@drmgrdu.ac.in

DOI: <https://doi.org/10.63458/ijerst.v3i4.136> | ARK: <https://n2t.net/ark:/61909/IJERST.v3i4.136>

Abstract

This paper presents the development of an Oval Slot Edge Antipodal Vivaldi Antenna (OSEAVA) designed to achieve wideband performance with enhanced gain and directivity for high-frequency applications. Vivaldi antennas are widely recognized for their ultra-wideband characteristics, making them essential in radar, imaging, and communication systems. However, conventional designs often suffer from gain degradation at higher frequencies and suboptimal radiation patterns. To overcome these challenges, an oval-shaped slot is introduced along the antenna's edge, improving radiation characteristics by enhancing directivity and reducing side lobes. The proposed antenna is simulated over a frequency range of 1 to 40 GHz, demonstrating superior bandwidth, gain, and radiation performance. Additionally, the design is optimized for minimal fabrication complexity while maintaining high efficiency, ensuring feasibility for real-world applications such as 5G communications, satellite systems, and advanced radar technologies. Simulation results indicate that OSEAVA offers significant improvements in bandwidth, gain, and radiation characteristics compared to conventional designs, establishing it as a strong candidate for next-generation wideband wireless and sensing systems.

Keywords: Wideband Antenna, Vivaldi Antenna, Antipodal Vivaldi Antenna, High-Frequency Applications, 5G Communications, Radar Systems, Satellite Systems, Radiation Pattern Optimization, Ultra-Wideband (UWB), Antenna Gain Enhancement.

1. Introduction

Modern wireless communication systems demand wide bandwidth, high data rates, and increased capacity, making the Antipodal Vivaldi Antenna (AVA) a highly effective solution. AVAs are widely employed in ultra-wideband (UWB) applications, including radar, 5G communication, ground-penetrating radar (GPR) for civil engineering (void detection in concrete), and both micrometer- and millimeter-wave technologies. First introduced by Dr. P. J. Gibson in 1979, the Vivaldi antenna is a linearly polarized, end-fire antenna known for its broad operating bandwidth and consistently high gain. The AVA design provides significant advantages, including enhanced directivity, improved sidelobe levels, and stable radiation patterns across a wide frequency spectrum. It is also referred to as a tapered slot antenna, functioning as an aperiodic, gradually scaled radiator that maintains a nearly constant beamwidth over its operating range. This structural characteristic ensures efficient radiation performance, making it highly suitable for next-generation wireless and sensing applications. Interestingly, the antenna derives its name from the renowned composer Antonio Vivaldi, as its shape resembles a violin, reflecting Dr. Gibson's admiration for Vivaldi's music. With ongoing advancements, the AVA continues to be a preferred choice for high-frequency applications, including satellite communication, medical imaging, and defense radar systems, driving innovation in modern electromagnetic technologies.

2. Literature Survey

[1]“A 3D Array High-Gain Vivaldi Antenna Design”, 2024 by Hongyang Xu, Haisheng Song. The paper aims to design a 3D array high-gain Vivaldi antenna to achieve enhanced bandwidth and improved gain performance. The proposed antenna operates over a broad frequency range of 20 GHz to 26.4 GHz, demonstrating a peak gain of 10.8 dB.

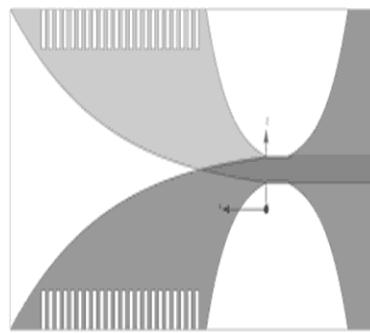
[2]“Compact Antipodal Vivaldi Array With UWB Beam Steering and Element AMC Inclusions for Scattering Reduction”, 2024 by callum j. hodgkinson1,2, Dimitris e.anagnostou 2. This paper aims to design a compact Antipodal Vivaldi Antenna Array (AVAA) with ultra-wideband (UWB) beam-steering capabilities, covering a matching range of 1.5–11 GHz. The proposed design incorporates artificial magnetic conductor (AMC) enhancements to minimize scattering while maintaining a compact aperture. Additionally, it achieves low side-lobe levels, ensuring improved radiation performance without increasing the antenna size.

[3]“A novel antipodal Vivaldi antenna for ultra-wideband far-field detection”, 2023 by Jingjing Wang, Jianwei Liu, Kangming Hou, Yongcheng Li. This paper aims to propose a novel Antipodal Vivaldi Antenna with enhanced gain and directivity by introducing an optimized substrate design that combines circular and rectangular shapes. To further improve gain, a fan-shaped expansion structure is integrated along the opening of the patch, functioning as a dielectric lens to enhance radiation performance.

[4]“Antipodal Vivaldi Antenna with enhanced gain and improved radiation patterns for 5G-IoT applications using metamaterial and Substrate Integrated Waveguide”, 2023 by Amruta S Dixit, Sumit Kumar. This paper aims to propose a novel Antipodal Vivaldi Antenna with enhanced gain and directivity by introducing an optimized substrate design that combines circular and rectangular shapes. To further improve gain, a fan-shaped expansion structure is integrated along the opening of the patch, functioning as a dielectric lens to enhance radiation performance.

[5] “Ultra-wide band antipodal Vivaldi antenna design using target detection algorithm for detection application”, 2023 by Sajjad Ahmed, Ariffuddin Joret, Norshidah Katiran. This paper aims to present a technique for detecting targets between two walls using an ultra-wideband (UWB) modified Antipodal Vivaldi Antenna (MAVA). The proposed detection system operates based on the Time Domain Reflectometry (TDR) principle within a Through-Wall Imaging (TWI) framework. A Vector Network Analyzer (VNA) is utilized to generate short and small pulses, enabling accurate target detection and localization.

3. System Methods


Antipodal Vivaldi antennas (AVAs) have undergone significant advancements up to 2024, focusing on bandwidth enhancement, gain improvement, and compactness. To achieve ultra-wideband (UWB) performance, researchers have modified antenna structures, such as using a bending feed line and sinusoidal modulated Gaussian tapered slots, which improved impedance matching and provided a wide operating frequency range. Gain and directivity enhancements have been achieved by incorporating equal-sized slots, dielectric lenses, and director arrays, resulting in improved radiation characteristics. Additionally, the integration of techniques like substrate-integrated waveguides (SIW) and meta materials has further optimized performance for applications in radar, imaging, and 5G communication systems.

The proposed system for designing a Vivaldi antenna utilizes an FR4 substrate with a dielectric constant of approximately 4.4 and a thickness of 1.6 mm. The design begins with the microstrip feed line, which should have a width of about 3 to 4 mm and a length of 10 to 20 mm to ensure proper impedance matching with the antenna. The aperture, which defines the antenna's operational bandwidth, should have a width corresponding to the desired frequency range and a length between 50 and 100 mm. A critical design consideration is the smooth tapering of the slot, which enables an effective impedance transition from the feed line to free space, improving the antenna's performance. Once these initial parameters are defined, electromagnetic simulation software such as CST Microwave Studio or HFSS is used to optimize key performance characteristics, including return loss, gain, and radiation pattern. Following the simulation, a prototype is fabricated, and its performance is tested to identify areas for refinement. This iterative process ensures that the final antenna design meets the required specifications and performs efficiently across the intended frequency range.

4.1 Theory and Design of Vivaldi Antenna

Vivaldi antennas, introduced by P. J. Gibson in 1979, are a type of tapered slot antenna (TSA) renowned for their ultra-wideband (UWB) capabilities and high directivity. These antennas are widely used in radar, microwave imaging, and high-speed communication due to their ability to efficiently operate across a broad frequency range, typically from a few GHz to over 40 GHz.

The design of Vivaldi antennas focuses on the taper profile, slot length, substrate material, and feed mechanism, all of which determine the antenna's bandwidth, gain, and radiation pattern. The slot's gradual widening, usually in an exponential or linear fashion, ensures impedance matching and minimizes signal loss over the wide operational bandwidth. The substrate material impacts the antenna's efficiency and bandwidth, with low-loss materials like PTFE or Rogers being preferred for high-frequency applications. The feeding mechanism, commonly a microstrip line or coaxial feed, transitions to the tapered slot to maintain proper impedance matching. Over the years, enhancements like dielectric loading, metamaterials, and fractal geometries have been introduced to improve performance. Recent trends include integrating Vivaldi antennas with MIMO systems to boost data throughput, using metamaterials for better gain and bandwidth, and adopting 3D printing for advanced fabrication, enabling more complex designs and cost-effective prototyping. These advancements continue to enhance the performance and versatility of Vivaldi antennas in various applications.

Fig 1. Antipodal Vivaldi Antenna

4.2 Antenna Parameters and Metrics

Several key parameters define the performance of an antenna:

Gain: Describes the ability of an antenna to direct energy in a particular direction. It is a measure of the efficiency of the antenna in converting input power into radio waves in a specified direction. Where A_e is the effective area and λ is the wavelength.

$$G = \frac{4\pi A_e}{\lambda^2} \quad (1)$$

Bandwidth: The range of frequencies over which the antenna can operate effectively.

$$BW = \frac{f_{\max} - f_{\min}}{f_{\text{center}}} \times 100\% \quad (2)$$

where:

f_{\max} is the highest frequency at which the antenna works effectively,

f_{\min} is the lowest frequency, f_{center} is the center frequency of the operating range.

Radiation Pattern: The graphical representation of the distribution of radiation emitted by the antenna. It shows the directionality of the antenna's radiation in different planes.

$$U(\theta) = \frac{P(\theta)}{A} \quad (3)$$

Where:

- $P(\theta)$ is the measured power at angle θ ,
- A is the effective aperture of the antenna.

VSWR (Voltage Standing Wave Ratio): Indicates how efficiently radio frequency power is transmitted from the antenna to the air without being reflected back.

$$\text{VSWR} = \frac{V_{\max}}{V_{\min}} \quad (4)$$

Where:

- V_{\max} is the maximum voltage along the transmission line.
- V_{\min} is the minimum voltage along the transmission line.

Polarization: Refers to the orientation of the electric field of the transmitted radio wave. Common types include linear and circular polarization.

$$\mathbf{E}(t) = E_0 \hat{e} e^{j(kz - \omega t)} \quad (5)$$

where E_0 is the amplitude, \hat{e} is the polarization direction, k is the wave number, ω is the angular frequency, z is the propagation direction, and t is time.

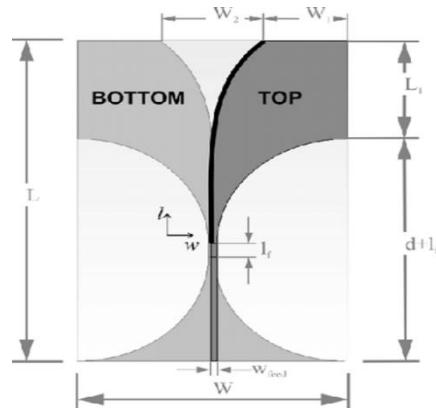
4.3 Software Components

Cst Design Suite : CST Design Suite is a powerful electromagnetic simulation software developed by Dassault Systems, widely used for designing and analyzing high-frequency components such as antennas, waveguides, and microwave circuits. It provides an integrated environment for full-wave 3D electromagnetic simulations, enabling accurate analysis of antenna performance, including parameters like return loss, gain, radiation pattern, and impedance matching. In the design of Antipodal Vivaldi

Antennas (AVAs), CST Design Suite is extensively used to optimize key parameters such as the flare angle, substrate material, and feed transition. The software allows engineers to fine-tune the antenna structure, ensuring wideband performance and efficient radiation characteristics. Additionally, CST's time-domain and frequency-domain solvers help in evaluating the AVA's ultra-wideband (UWB) behavior, ensuring minimal signal distortion and improved directivity. This makes CST Design Suite an essential tool for designing high-performance AVAs for applications in radar, imaging, and high-speed communication systems.

Sigma Plot: Sigma Plot is a scientific graphing and data analysis software widely used for visualizing complex datasets with high precision. It provides advanced plotting capabilities, statistical analysis tools, and curve fitting functions, making it ideal for research and engineering applications. In the design and analysis of Antipodal Vivaldi Antennas (AVAs), SigmaPlot is used to graphically represent key performance metrics such as return loss (S_{11}), gain, radiation patterns, and impedance variations over a wide frequency range. By visualizing simulation and experimental data, engineers can analyze trends, compare results, and optimize antenna parameters for better performance. Sigma Plot's ability to generate detailed plots and statistical insights helps in refining AVA designs, ensuring wideband operation, efficient impedance matching, and improved directivity for applications in radar, communication, and imaging systems.

4.4 Parameters of Ava


The AVA is designed with a dimension of 96.6×51.00 mm and is constructed using FR4, a widely used material known for its durability and electrical insulation properties. It operates at a frequency of 13 GHz, making it suitable for high-frequency applications. With a gain of 12 dB, the AVA provides significant signal amplification, enhancing its efficiency in wireless communication systems. The permittivity of 4.3 indicates its dielectric properties, which play a crucial role in signal propagation and impedance matching. Additionally, it features a bandwidth range of 4-7 GHz, allowing it to cover a wide spectrum of frequencies, making it versatile for various RF and microwave applications.

4.5 Working Principle Of Antipodal Vivaldi Antenna

An Antipodal Vivaldi Antenna (AVA) operates based on the principles of electromagnetic wave propagation and radiation. This type of antenna is a variation of the Vivaldi antenna, known for its ultra-wideband (UWB) capabilities, but with specific design modifications to enhance performance across a wide frequency range.

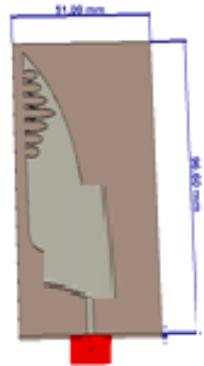
4.6 Antenna Structure

The Antipodal Vivaldi Antenna consists of two metallic conductive plates placed on opposite sides of a dielectric substrate. The metallic plates form an exponentially tapered slotline, which opens up gradually from the feed to the end, allowing for effective impedance matching across a wide frequency range. Unlike the traditional Vivaldi antenna, where the tapering occurs on a single plane, the antipodal version has one conducting strip on each side of the substrate. This antipodal structure improves bandwidth and directivity, making the antenna suitable for UWB applications which is shown in figure 2.

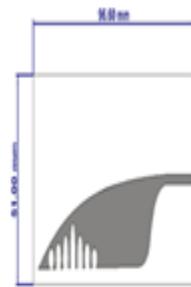
Fig 2. Antipodal Vivaldi Antenna for UWB Application

4.7 Working Mechanism

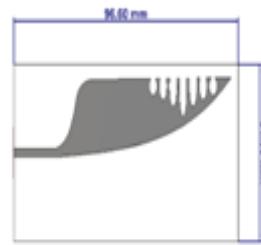
Electromagnetic Wave Propagation: The antenna is excited by a microstrip or coplanar waveguide (CPW) feed. This feed launches electromagnetic waves that propagate along the tapered slot. As the waves travel, the slot's gradual widening causes the energy to radiate efficiently into free space. The tapering shape plays a critical role in maintaining impedance matching, reducing reflection, and ensuring wideband performance.

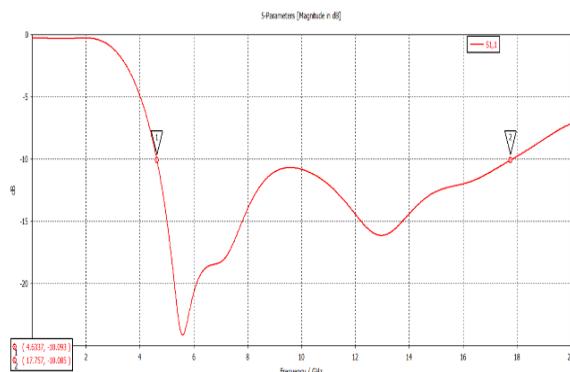

Endfire Radiation Pattern: The antenna's radiation pattern is typically endfire, meaning it radiates energy in the direction along the axis of the taper. The antipodal configuration enhances the directivity of the radiation, focusing energy more effectively in the desired direction.

Balancing Electric Field: One of the key benefits of the antipodal design is the more balanced electric field across the antenna, which reduces cross-polarization and enhances radiation efficiency. The conductive strips on both sides of the substrate contribute to better energy radiation and less signal loss.


5. Simulation Result and Discussions

5.1 Design Of Antipodal Vivaldi Antenna


The Antipodal Vivaldi Antenna (AVA) is a variation of the Vivaldi antenna, designed to enhance bandwidth and improve radiation characteristics. Unlike the standard Vivaldi antenna, the antipodal version has two conducting plates placed on opposite sides of the substrate. These plates gradually flare outward to create a balanced field distribution, resulting in a broader operating bandwidth and improved directivity. The antipodal Vivaldi antenna designed in this project was done in CST studio suite software. The prototype is been designed using FR-4 substrate as shown below.


Fig 3. Tapered Slot Antipodal Vivaldi Antenna

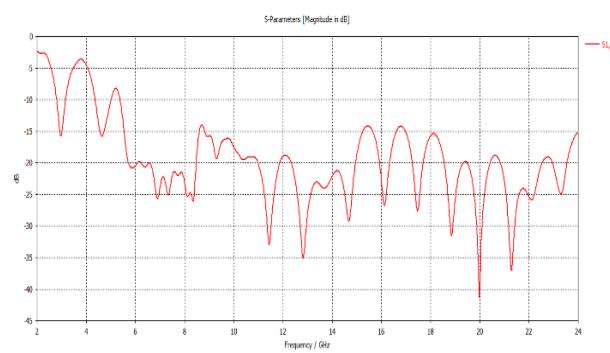
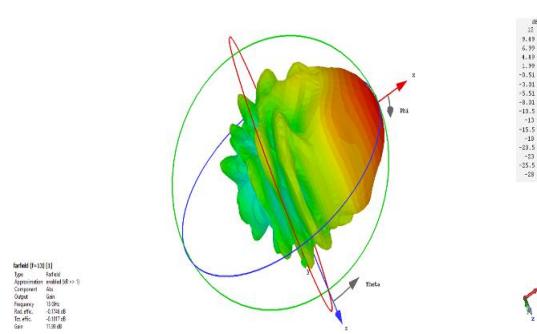
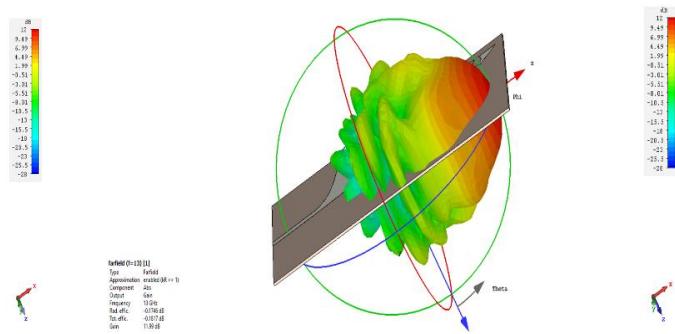

Fig 4. Frontside

Fig 5. Backside

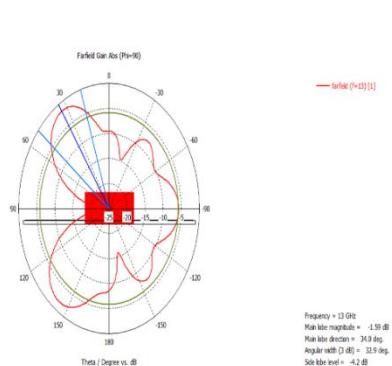
Fig 6. S-Parameter


The figure 6 shows the tapered slot antipodal Vivaldi antenna with it's measurements.

Dimensions: The design shared has an overall length of 96.60 mm and a width of 51.00 mm, with a distinctive curved taper for efficient signal radiation.


Tapered Slot: The curved slot gradually expands, facilitating a smooth transition for electromagnetic waves from the feed to free space.

Notch Cuts: As shown, the structure has periodic notch cuts, potentially enhancing the antenna's gain and radiation pattern.


The antipodal Vivaldi antenna is especially suited for ultra-wideband (UWB) applications, including radar, microwave imaging, and communication systems. Its broad bandwidth and high gain make it ideal for high-frequency applications.

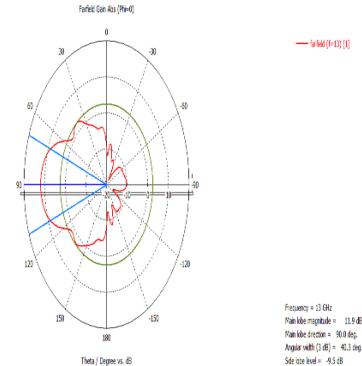

Fig 7. 3D Radiation Pattern

Fig 8. Farfield Radiation Pattern

Fig 9. Main Lobe

Fig 10. Directivity of Side Lobe

The design of a Vivaldi antenna using an FR4 substrate requires careful consideration of multiple parameters to ensure optimal performance across a wide frequency range. The choice of FR4, with a dielectric constant of approximately 4.4 and a thickness of 1.6 mm, impacts the antenna's impedance matching and efficiency. The microstrip feed line, with a width of 3 to 4 mm and a length of 10 to 20 mm, plays a crucial role in maintaining proper impedance transition, reducing reflections, and enhancing signal transmission. The aperture size, which determines the operational bandwidth, must be proportionate to the desired frequency range, with a typical length between 50 to 100 mm to support ultra-wideband (UWB) characteristics. One of the most critical design elements is the smooth tapering of the slot, which facilitates a gradual impedance transition from the feed line to free space, improving radiation efficiency and reducing losses. The tapering profile, whether exponential or linear, significantly affects the bandwidth and directivity of the antenna. To validate the design, electromagnetic simulation software such as CST Microwave Studio is used to analyze key performance parameters like return loss (S11), gain, and radiation pattern. These simulations help optimize the antenna structure before physical fabrication, minimizing potential mismatches and performance issues.

6. Conclusion

The antipodal Vivaldi antenna is an effective choice for wideband applications due to its unique tapered slot structure that enables excellent radiation characteristics over a broad frequency range. It offers high directivity, stable radiation patterns, and good impedance matching across the bandwidth, making it suitable for applications such as radar, wireless communications, and ultra-wideband (UWB) systems. Its

compact size, ease of fabrication, and potential for integration into phased array systems also contribute to its widespread use in modern antenna technology. Overall, the antipodal Vivaldi antenna stands out for its wideband performance, low-profile design, and versatility in various high-frequency applications.

References

1. M. Moosazadeh, S. Kharkovsky, J. T. Case, and B. Samali, "Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications," *IET Microw., Antennas Propag.*, vol. 11, no. 6, pp. 796–803, May 2017.
2. X. Zhuge and A. G. Yarovoy, "A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection," *IEEE Trans. Geosci. Remote Sens.*, vol. 49, no. 1, pp. 509–518, Jan. 2011.
3. J. D. S. Langley, P. S. Hall, and P. Newham, "Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays," *IEE Proc.-Microw., Antennas Propag.*, vol. 143, no. 2, Apr. 1996.
4. E. W. Reid, L. Ortiz-Balbuena, A. Ghadiri, and K. Moez, "A 324-element Vivaldi antenna array for radio astronomy instrumentation," *IEEE Trans. Instrum. Meas.*, vol. 61, no. 1, pp. 241–250, Jan. 2012.
5. S. H. He, W. Shan, C. Fan, Z. C. Mo, F. H. Yang, and J. H. Chen, "An improved Vivaldi antenna for vehicular wireless communication systems," *IEEE Antennas Wireless Propag. Lett.*, vol. 13, pp. 1505–1508, Aug. 2014.
6. M. de Oliveira, A. Mendes de Oliveira Neto, M. B. Perotoni, N. Nurhayati, H. Baudrand, A. de Carvalho Jr., and J. F. Justo, "A fern antipodal Vivaldi antenna for near-field microwave imaging medical applications," *IEEE Trans. Antennas Propag.*, vol. 14, pp. 1334–1337, Feb. 2015.
7. M. D. Oliveira, M. B. Perotoni, S. T. Kofuji, and J. F. Justo, "A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern," *IEEE Antennas Wireless Propag. Lett.*, vol. 14, pp. 1334–1337, Feb. 2015.
8. M. de Oliveira et al., "A high directive koch fractal Vivaldi antenna design for medical near-field microwave imaging applications," *Microw. Opt. Technol. Lett.*, vol. 59, no. 2, pp. 337–346, Feb. 2017.
9. J. Bourqui, M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," *IEEE Trans. Antennas Propag.*, vol. 58, no. 7, pp. 2318–2326, Jul. 2010.
10. M. T. Islam, M. Z. Mahmud, N. Misran, J.-I. Takada, and M. Cho, "Microwave breast phantom measurement system with compact side slotted directional antenna," *IEEE Access*, vol. 5, pp. 5321–5330, Apr. 2017.
11. Balanis, C. A. (1992). "Antenna theory: a review". *Proceedings of the IEEE*, 80(1), 7–23.
12. Min Tang; Jiawei Qian; Yue-Ping Zhang; Junfa Mao. "Vivaldi Antenna Array With Heat Dissipation Enhancement for Millimeter-Wave Applications Li Zhou".
13. Honari, M.M.; Ghaffarian, M.S.; Mirzavand, R. "Miniaturized Antipodal Vivaldi Antenna with Improved Bandwidth Using Exponential Strip Arms". *Electronics* 2021, 10, 83
14. Y Rai, S Gotra, B Kumar, S Agarwal, D Singh , "A Compact Ultrawideband Antipodal Vivaldi Antenna and Its Efficacy in Through-Wall Imaging" *IEEE Access*, vol. 8, pp. 102570–102594, 2024
15. M. de Oliveira et al., "A high directive koch fractal Vivaldi antenna design for medical near-field microwave imaging applications," *Microw. Opt. Technol. Lett.*, vol. 59, no. 2, pp. 337–346, Feb. 2017
16. J. M. Felício, J. M. Bioucas-Dias, J. R. Costa, and C. A. Fernandes, "Antenna design and near-field characterization for medical microwave imaging applications," *IEEE Trans. Antennas Propag.*, vol. 67, no. 7, pp. 4811–4824, Jul. 2019.
17. B. Fortuny, K. Tong, K. Chetty, and P. Brittan, "High-gain triple-band reconfigurable Vivaldi antenna," in 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 199–201, 2014.

18. N. T. Nguyen, G. Clementi, C. Migliaccio, N. Fortino, J.-Y. Dauvignac, J. Willebois, and C. Chekroun, "Wideband Vivaldi antenna array with mechanical support and protection radome for land-mine detection radar," in 2015 European Radar Conference (EuRAD), pp. 537–540, 2015.
19. M. Gatchev, S. Kamenopolsky, V. Bojanov, and P. Dankov, "Influence of the milling depth on the microstrip parameters in milled PCB-plates for microwave applications," in 14th International Conference on Microwaves, Radar and Wireless Communications. MIKON - 2002. Conference Proceedings (IEEE Cat.No.02EX562), vol. 2, pp. 476–479 vol. 2, 2002.
20. O. Javashvili, "UWB antennas for wall penetrating radar systems," Master's thesis, University of Gävle, Gävle, Sweden, 2009.